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Plan of the course

• Motivation

• Topos-theoretic background

• Toposes as ‘bridges’

• Functors inducing morphisms of toposes

• Relative toposes (joint work with Riccardo Zanfa)

- Relative presheaf toposes
- The fundamental adjunction
- Relative sheaf toposes

• A problem of Grothendieck
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Relativity techniques

• Broadly speaking, in Mathematics the relativization method
consists in trying to state notions and results in terms of
morphisms, rather than objects, of a given category, so that
they can be ‘relativized’ to an arbitrary base object.

• One works in the new, relative universe as it were the
‘classical’ one, and then interprets the obtained results from
the point of view of the original universe. This process is
usually called externalization.

• Relativity techniques can be thought as general ‘change of
base techniques’, allowing one to choose the universe
relatively to which one works according to one’s needs.

• The relativity method has been pionneered by Grothendieck,
in particular for schemes, in his categorical refoundation of
Algebraic Geometry, and have played a key role in his work.

• We aim for a similar set of tools for toposes, that is, for an
efficient formalism for doing topos theory over an arbitrary
base topos.
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Topos theory over an arbitrary base topos

Our new foundations for relative topos theory are based on stacks
(and, more generally, fibrations and indexed categories).

The approach of category theorists (Lawvere, Diaconescu,
Johnstone, etc.) to this subject is chiefly based on the notions of
internal category and of internal site.

The problem with these notions is that they are too rigid to
naturally capture relative topos-theoretic phenomena, as well as
for making computations and formalizing ‘parametric reasoning’.

We shall resort to the more general and technically flexible notion
of stack, developing the point of view originally introduced by J.
Giraud in his paper Classifying topos.
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Grothendieck toposes
• The notion of topos was introduced in the early sixties by A.

Grothendieck with the aim of bringing a topological or
geometric intuition also in areas where actual topological
spaces do not occur.
• Grothendieck realized that many important properties of

topological spaces X can be naturally formulated as
(invariant) properties of the categories Sh(X ) of sheaves of
sets on the spaces.
• He then defined toposes as more general categories of

sheaves of sets, by replacing the topological space X by a
(small) site, that is a pair (C, J) consisting of a (small)
category C and a ‘generalized notion of covering’ J on it, and
taking sheaves (in a generalized sense) over the site:

X //

��

Sh(X )

��
(C, J) // Sh(C, J)
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Sieves
The notion of Grothendieck topology on a category represents a
‘categorification’ of the classical notion of covering of an open set of a
topological space by a family of open subsets. In order to define it in full
generality, one needs to talk about sieves.

Definition
Given a category C and an object c ∈ Ob(C), a sieve S in C on c is a
collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.
If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d .

Remark
Sieves in a category C on an object c correspond precisely to the
subobjects of the representable functor HomC(−, c) in the category
[Cop,Set] of presheaves on C.
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Grothendieck topologies

Definition
A Grothendieck topology on a category C is a function J which
assigns to each object c of C a collection J(c) of sieves on c in
such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c}
is in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such
that f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are said
to be J-covering.
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Sites

• A site (resp. small site) is a pair (C, J) where C is a category
(resp. a small category) and J is a Grothendieck topology on
C.

• A site (C, J) is said to be small-generated if C is locally small
and has a small J-dense subcategory (that is, a category D
such that every object of C admits a J-covering sieve
generated by arrows whose domains lie in D, and for every
arrow f : d → c in C where d lies in D the family of arrows
g : dom(g)→ d such that f ◦ g lies in D generates a
J-covering sieve).

Remark
It is important to allow oneself to work with small-generated sites,
rather than merely with small sites, for greater generality and
technical flexibility.
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Matching families and amalgamations
Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.
• Let P : Cop → Set be a presheaf on C and S be a sieve on an

object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in such
a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element x ∈ P(c)
such that

P(f )(x) = xf for all f in S .

Remark
Matching families for S of elements of P correspond precisely to natural
transformations S → P, that is, to morphisms S → P in the presheaf
topos [Cop,Set], where S is regarded as a subobject of the
representable HomC(−, c), while amalgamations correspond to
morphisms HomC(−, c)→ P (by the Yoneda lemma).
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Sheaves on a site

• Given a site (C, J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C
has a unique amalgamation.

• The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are
J-sheaves.

Definition
A Grothendieck topos is any category equivalent to the category
of sheaves on a small (or equivalently, small-generated) site.

10 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric
transformation.

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of f )
and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

• Grothendieck toposes and geometric morphisms between
them form a 2-category.
• Given two toposes E and F , geometric morphisms from E to
F and geometric transformations between them form a
category, denoted by Geom(E ,F).
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Examples of geometric morphisms
• A continuous function f : X → Y between topological spaces

gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for any
open subset V of Y . The inverse image Sh(f )∗ acts on étale
bundles over Y by sending an étale bundle p : E → Y to the
étale bundle over X obtained by pulling back p along f : X → Y .

• Every Grothendieck topos E has a unique geometric morphism
E → Set. The direct image is the global sections functor
Γ : E → Set, sending an object e ∈ E to the set HomE(1E ,e),
while the inverse image functor ∆ : Set→ E sends a set S to the

coproduct

⊔
s∈S

1E .

• For any site (C, J), the pair of functors formed by the inclusion
Sh(C, J) ↪→ [Cop,Set] and the associated sheaf functor
a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].

• For any Grothendieck topos E and any morphism f : P → Q in E ,
the pullback functor f ∗ : E/Q → E/P has both a left adjoint
(namely, the functor Σf given by composition with f ) and a right
adjoint πf . It is therefore the inverse image of a geometric
morphism E/P → E/Q.
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A general hom-tensor adjunction I

Theorem
Let C be a small category, E be a locally small cocomplete
category and A : C → E a functor. Then we have an adjunction

LA : [Cop,Set] // E : RA
oo

where the right adjoint RA : E → [Cop,Set] is defined for each
e ∈ Ob(E) and c ∈ Ob(C) by:

RA(e)(c) = HomE(A(c),e)

and the left adjoint LA : [Cop,Set]→ E is defined by

LA(P) = colim(A ◦ πP),

where πP is the canonical projection functor
∫

P → C from the
category of elements

∫
P of P to C.
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A general hom-tensor adjunction II
Remarks
• The functor LA can be considered as a generalized tensor

product, since, by the construction of colimits in terms of
coproducts and coequalizers, we have the following
coequalizer diagram:∐

c∈C,p∈P(c)
u:c′→c

A(c′)
τ
//

θ //
∐

c∈C, p∈P(c)

A(c)
φ // LA(P),

where
θ(c,p,u, x) = (c′,P(u)(p), x)

and
τ(c,p,u, x) = (c,p,A(u)(x)) .

For this reason, we shall also denote LA by

−⊗C A : [Cop,Set]→ E .

• We can rewrite the above coequalizer as follows:∐
c,c′∈C

P(c)× HomC(c′, c)× A(c′)
τ
//

θ //
∐
c∈C

P(c)× A(c)
φ // P ⊗C A .

From this we see that this definition is symmetric in P and A,
that is

P ⊗C A ∼= A⊗Cop P .
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Geometric morphisms as flat functors I

Definition
• A functor A : C → E from a small category C to a locally small

topos E with small colimits is said to be flat if the functor
−⊗C A : [Cop,Set]→ E preserves finite limits.
• The full subcategory of [C, E ] on the flat functors will be

denoted by Flat(C, E).

Theorem
Let C be a small category and E be a Grothendieck topos. Then we
have an equivalence of categories

Geom(E , [Cop,Set]) ' Flat(C, E)

(natural in E), which sends
• a flat functor A : C → E to the geometric morphism
E → [Cop,Set] determined by the functors RA and −⊗C A, and
• a geometric morphism f : E → [Cop,Set] to the flat functor

given by the composite f ∗ ◦ yC of f ∗ : [Cop,Set]→ E with the
Yoneda embedding yC : C → [Cop,Set].
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Flat = filtering
Definition
A functor F : C → E from a small category C to a Grothendieck
topos E is said to be filtering if it satisfies the following conditions:

(a) For any object E of E there exist an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C
and a generalized element Ei → F (bi ) in E .

(b) For any two objects c and d in C and any generalized element
〈x , y〉 : E → F (c)× F (d) in E there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C
with arrows ui : bi → c and vi : bi → d in C and a generalized
element zi : Ei → F (bi ) in E such that 〈F (ui ),F (vi )〉 ◦ zi =
〈x , y〉 ◦ ei for all i ∈ I.

(c) For any two parallel arrows u, v : d → c in C and any
generalized element x : E → F (d) in E for which
F (u) ◦ x = F (v) ◦ x , there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an arrow
wi : bi → d and a generalized element yi : Ei → F (bi ) such
that u ◦ wi = v ◦ wi and F (wi ) ◦ yi = x ◦ ei for all i ∈ I.

Theorem (Mac Lane and Moerdijk)
A functor F : C → E from a small category C to a Grothendieck
topos E is flat if and only if it is filtering.

Remarks
• For any small category C, a functor P : C → Set is filtering if

and only if its category of elements
∫

P is a filtered category
(equivalently, if it is a filtered colimit of representables).
• For any small cartesian category C, a functor C → E is flat if

and only if it preserves finite limits.
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Geometric morphisms to Sh(C, J)
Definition
If (C, J) is a site, a flat functor F : C → E to a Grothendieck topos is
said to be J-continuous if it sends J-covering sieves to epimorphic
families.
The full subcategory of Flat(C, E) on the J-continuous flat functors
will be denoted by FlatJ(C, E).

Theorem
For any site (C, J) and Grothendieck topos E , the
above-mentioned equivalence between geometric morphisms and
flat functors restricts to an equivalence of categories

Geom(E ,Sh(C, J)) ' FlatJ(C, E)

natural in E .

Sketch of proof.
Appeal to the previous theorem
• identifying the geometric morphisms E → Sh(C, J) with the

geometric morphisms E → [Cop,Set] which factor through the
canonical geometric inclusion Sh(C, J) ↪→ [Cop,Set], and
• using the characterization of such morphisms as the

geometric morphisms f : E → [Cop,Set] such that the
composite f ∗ ◦ y of the inverse image functor f ∗ of f with the
Yoneda embedding y : C → [Cop,Set] sends J-covering sieves
to epimorphic families in E .
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C, J)→ (D,K ) is a functor F : C → D

such that the composite l ′ ◦ F , where l ′ is the canonical functor
D → Sh(D,K ), is flat and J-continuous. If C and D have finite
limits then F is a morphism of sites if it preserves finite limits
and is cover-preserving.
• A comorphism of sites (D,K )→ (C, J) is a functor π : D → C

which has the covering-lifting property (in the sense that for
any d ∈ D and any J-covering sieve S on π(d) there is a
K -covering sieve R on d such that π(R) ⊆ S).

We have the following well-known fundamental result, which we
shall discuss in detail below:

Theorem
• Every morphism of sites F : (C, J)→ (D,K ) induces a

geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J).
• Every comorphism of sites π : (D,K )→ (C, J) induces a

geometric morphism Cπ : Sh(D,K )→ Sh(C, J).
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Characterizing morphisms of sites

We can explicitly characterize the functors which are morphisms
of sites by using:
• the characterization of filtering functors with values in a

Grothendieck topos as functors which send certain families
to epimorphic families,

• the fact that the image under the associated sheaf functor of
a family of natural transformations with common codomain is
epimorphic if and only if the family is locally jointly surjective,
and

• the following description of the arrows in a Grothendieck
topos between objects coming from a site in terms of locally
compatible families of arrows in the site.
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Arrows in a Grothendieck topos
Given a site (C, J), for two arrows h, k : c → d in C we shall write
h ≡J k for J-local equality, that is, to mean that there exists a
J-covering sieve S on c such that h ◦ f = k ◦ f for every f ∈ S.
Notice that, denoting by l the canonical functor C → Sh(C, J),
l(h) = l(k) if and only if h ≡J k .

Proposition
Let (C, J) be a small-generated site.

(i) Then any arrow ξ : l(c)→ l(d) in Sh(C, J) admits a local
representation by a family of arrows
{fu : cu → c,gu : cu → d | u ∈ U} such that
{fu : cu → c | u ∈ U} generates a J-covering sieve, for any
object e and arrows h : e→ cu and k : e→ cu′ such that
fu ◦ h = fu′ ◦ k we have gu ◦ h ≡J gu′ ◦ k, and ξ ◦ l(fu) = l(gu)
for every u ∈ U.

(ii) Conversely, any family F : {fu : cu → c,gu : cu → d | u ∈ U}
such that {fu : cu → c | u ∈ U} generates a J-covering sieve
and for any object e and arrows h : e→ cu and k : e→ cu′

such that fu ◦ h = fu′ ◦ k we have gu ◦ h ≡J gu′ ◦ k, determines
a unique arrow ξF : l(c)→ l(d) in Sh(C, J) such that
ξF ◦ l(fu) = l(gu) for every u ∈ U.

20 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Arrows in a Grothendieck topos

(iii) Two families F = {fu : cu → c,gu : cu → d | u ∈ U} and
F ′ = {f ′v : ev → c,g′v : ev → d | v ∈ V} as in (ii) determine
the same arrow l(c)→ l(d) (i.e. ξF = ξF ′ ) if and only if they
are locally equal on a common refinement, i.e. if there exist a
J-covering family {ak : bk → c | k ∈ K} and factorizations of
it through both of them by arrows xk : bk → cu(k) and
yk : bk → ev(k) (i.e. fu(k) ◦ xk = ak = f ′v(k) ◦ yk for every k ∈ K )
such that gu(k) ◦ xk ≡J g′v(k) ◦ yk for every k ∈ K .

(iv) Given two families F = {fu : cu → c,gu : cu → d | u ∈ U} and
G = {hv : dv → d , kv : dv → e | v ∈ V}, the composite arrow
ξG ◦ ξF : l(c)→ l(e) is induced as in (ii) by the family
{fu ◦ x : dom(x)→ c, kv ◦ y : dom(y)→ e | (u, v , x , y) ∈ Z},
where Z = {(u, v , x , y) | u ∈ U, v ∈ V ,dom(x) =
dom(y), cod(x) = cu, cod(y) = dv ,hv ◦ y = gu ◦ x}.

21 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Arrows in a Grothendieck topos
Proposition
Let (C, J) be a small-generated site and aJ the associated sheaf
functor [Cop,Set]→ Sh(C, J). Then

(i) An arrow ξ : l(c)→ aJ(P) in Sh(C, J) (equivalently, an element
of aJ(P)(c)) can be identified with an equivalence class of
families {xf ∈ P(dom(f )) | f ∈ S} of elements of P indexed by
the arrows f of a J-covering sieve S on c which are locally
matching in the sense that for any arrow g composable with an
arrow f ∈ S, xf◦g ≡J P(g)(xf ), modulo the equivalence which
identifies two such families when they are locally equal on a
common refinement.

(ii) Any such family yields a local representation of ξ in the sense
that ξ ◦ l(f ) = rxf for each f ∈ S, where rxf is the image under aJ
of the arrow yC(dom(f ))→ P corresponding to the element
xf ∈ P(dom(f )) via the Yoneda lemma.

Remark
The proposition gives an explicit description of the associated sheaf
functor aJ(P) of a presheaf P, different from the usual construction
of it by means of the double plus construction. This alternative
construction of the associated sheaf functor seems to have been
first discovered (albeit not published) by Eduardo Dubuc in the
eighties.
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J-functional relations

More generally, for any presheaves P,Q ∈ [Cop,Set], the arrows
aJ(P)→ aJ(Q) in Sh(C, J) are in natural bijection with the
J-functional relations from P to Q in [Cop,Set], in the sense of the
following

Definition
In a presheaf topos [Cop,Set], a relation R � P ×Q (that is, an
assignment c → R(c) to each object c of C of a subset R(c) of
P(c)×Q(c) which is functorial in the sense that for any arrow
f : c → c′ in C, P(f )×Q(f ) sends R(c′) to R(c)), is said to be
J-functional from P to Q if it satisfies the following properties:

(i) for any c ∈ C and any (x , y) ∈ P(c)×Q(c),
if {f : d → c | (P(f )(x),Q(f )(y)) ∈ R(d)} ∈ J(c) then
(x , y) ∈ R(c);

(ii) for any c ∈ C and any (x , y), (x ′, y ′) ∈ R(c), if x = x ′ then
{f : d → c | Q(f )(y) = Q(f )(y ′)} ∈ J(c);

(iii) for any c ∈ C and any x ∈ P(c),
{f : d → c | ∃y ∈ Q(d) (P(f )(x), y) ∈ R(d)} ∈ J(c).
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Theorem
Let (C, J) and (C′, J ′) be small-generated sites, and
l : C → Sh(C, J), l ′ : C′ → Sh(C′, J ′) be the canonical functors
(given by the composite of the relevant Yoneda embedding with the
associated sheaf functor). Then, given a functor F : C → C′, the
following conditions are equivalent:

(i) A induces a geometric morphism u : Sh(C′, J ′)→ Sh(C, J)
making the following square commutative:

C F //

l
��

C′

l′

��
Sh(C, J)

u∗ // Sh(C′, J ′);

(ii) The functor F is a morphism of sites (C, J)→ (C′, J ′) in the
sense that it satisfies the following properties:
(1) A sends every J-covering family in C into a J ′-covering family in
C′.

(2) Every object c′ of C′ admits a J ′-covering family

c′i −→ c′ , i ∈ I ,

by objects c′i of C′ which have morphisms

c′i −→ F (ci)

to the images under A of objects ci of C.
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(3) For any objects c1, c2 of C and any pair of morphisms of C′

f ′1 : c′ −→ F (c1) , f ′2 : c′ −→ F (c2) ,

there exists a J ′-covering family

g′i : c′i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i
1 : bi −→ c1 , f i

2 : bi → c2 , i ∈ I ,

and of morphisms of C′

h′i : c′i −→ F (bi ) , i ∈ I ,

making the following squares commutative:

c′i
g′i //

h′i
��

c′

f ′1
��

F (bi )
F (f i

1) // F (c1)

c′i
g′i //

h′i
��

c′

f ′2
��

F (bi )
F (f i

2) // F (c2)
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(4) For any pair of arrows f1, f2 : c ⇒ d of C and any arrow of C′

f ′ : b′ −→ F (c)

satisfying
F (f1) ◦ f ′ = F (f2) ◦ f ′ ,

there exist a J ′-covering family

g′i : b′i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C′

h′i : b′i −→ F (bi ) , i ∈ I ,

making commutative the following squares:

b′i
g′i //

h′i
��

b′

f ′

��
F (bi )

F (hi ) // F (c)
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Morphisms of sites

If F is a morphism of sites (C, J)→ (D,K ), we denote by
Sh(F ) : Sh(D,K )→ Sh(C, J) the geometric morphism which it
induces.

Remarks
• If (C, J) and (D,K ) are cartesian sites (that is, C and D are

cartesian categories) then a functor C → D which is cartesian
and sends J-covering families to K -covering families is a
morphism of sites (C, J)→ (D,K ).

• If J and K are subcanonical then a geometric morphism
g : Sh(D,K )→ Sh(C, J) is of the form Sh(f ) for some f if and
only if the inverse image functor g∗ sends representables to
representables; if this is the case then f is isomorphic to the
restriction of g∗ to the full subcategories of representables.
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Comorphisms of sites

Recall that a comorphism of sites (D,K )→ (C, J) is a functor
π : D → C such that for any d ∈ D and any J-covering sieve S on
π(d) there is a K -covering sieve R on d such that π(R) ⊆ S.

Proposition
Every comorphism of sites π : D → C induces a flat and
J-continuous functor Aπ : C → Sh(D,K ) given by

Aπ(c) = aK (HomC(π(−), c))

and hence a geometric morphism

f : Sh(D,K )→ Sh(C, J)

with inverse image f ∗(F ) ∼= aK (F ◦ π) for any J-sheaf F on C.
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Kan extensions
The direct and image functors of geometric morphisms induced
by morphisms or comorphisms of sites can be naturally described
in terms of Kan extensions.

Recall that, given a functor f : C → D,
• the right Kan extension Ranf op along f op, which is right adjoint

to the functor f ∗ : [Dop,Set]→ [Cop,Set], is given by the
following formula:

Ranf op (F )(b) = lim←−
φ:fa→b

F (a),

where the limit is taken over the opposite of the comma
category (f ↓b).

• The left adjoint to f ∗ is the left Kan extension Lanf op along f op,
which is left adjoint to f ∗, is given by the following formula:

Lanf op (F )(b) = lim−→
φ:b→fa

F (a),

where the colimit is taken over the opposite of the comma
category (b↓ f ).
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Geometric morphisms and Kan extensions
Proposition

(i) Let F : (C, J)→ (D,K ) be a morphism of small-generated
sites. Then
• the direct image Sh(F )∗ of the geometric morphism

Sh(F ) : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of F∗;
• the inverse image Sh(F )∗ of Sh(F ) is given by

aK ◦ LanFop ◦ iJ ,

where LanFop is the left Kan extension and iJ is the inclusion
Sh(C, J) ↪→ [Cop,Set].

(ii) Let F : (D,K )→ (C, J) be a comorphism of small-generated
sites. Then
• the direct image (CF )∗ of the geometric morphism

CF : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of the right
Kan extension RanFop ;

• the inverse image (CF )
∗ of CF is given by

aJ ◦ F∗ ◦ iK ,

where iK is the inclusion Sh(D,K ) ↪→ [Dop,Set].
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Unifying morphisms and comorphisms of sites

In order to better contextualize the role of morphisms and of
comorphisms of sites, we will now briefly review the philosophy of
toposes as ‘bridges’, which also inspires all the other results
presented in this course.

In fact, we shall unify the notions of morphism and comorphisms
of sites by interpreting them as two fundamentally different ways
of describing morphisms of toposes which correspond to each
other under a ‘bridge’.

More specifically, morphisms of sites provide an ‘algebraic’
perspective on morphisms of toposes, while comorphisms of sites
provide a ‘geometric’ perspective on them.
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Topos-theoretic invariants
• By a topos-theoretic invariant we mean any notion which is

invariant under categorical equivalence of toposes.

• The notion of a geometric morphism of toposes is a fundamental
invariant, which has notably allowed to build general comology
theories starting from the categories of internal abelian groups or
modules in toposes. In particular, the topos-theoretic viewpoint
has allowed Grothendieck to refine and enrich the study of
cohomology, up to the so-called ‘six-operation formalism’.
The cohomological invariants have had a tremendous impact on
the development of modern Algebraic Geometry and beyond.

• On the other hand, also homotopy-theoretic invariants such as
the fundamental group and the higher homotopy groups can be
defined as invarants of toposes.

• Still, these are by no means the only invariants that one can
consider on toposes: indeed, there are infinitely many invariants
of toposes (of algebraic, logical, geometric or whatever nature),
the notion of identity for toposes being simply categorical
equivalence.
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Toposes as bridges
• In the topos-theoretic study of theories or ‘concrete’

mathematical contexts, the latter are represented by sites (of
definition of their classifying topos or of some other topos
naturally attached to them).

• Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across them:

ET ' ET′

��
T

11

T′

• The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

• As such, different properties (resp. constructions) arising in the
context of the two presentations are seen to be different
manifestations of a unique property (resp. construction) lying
at the topos-theoretic level.
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The ‘bridge’ technique
• Decks of ‘bridges’: Morita-equivalences (that is, equivalences

between different presentations of a given topos, or more
generally morphisms or other kinds of relations between
toposes)

• Arches of ‘bridges’: Site characterizations for topos-theoretic
invariants (or more generally ‘unravelings’ of topos-theoretic
invariants in terms of concrete representations of the relevant
topos)

For example, this ‘bridge’ yields a logical equivalence between the
‘concrete’ properties P(C,J) and Q(D,K ), interpreted in this context as
manifestations of a unique property I lying at the level of the topos.
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Toposes as bridges

• This methodology is technically effective because the
relationship between a topos and its representations is often
very natural, enabling us to transfer invariants across
different representations.

• On the other hand, the ‘bridge’ technique is highly non-trivial,
in the sense that it often yields deep and surprising results.
This is due to the fact that a given invariant can manifest itself
in significanly different ways in the context of different
presentations.

• The level of generality represented by topos-theoretic
invariants is ideal to capture several important features of
mathematical theories and constructions.
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Relating morphisms and comorphisms of sites

The inspiration for our constructions is provided by the following
result:

Proposition
Let (C, J) and (D,K ) be small-generated sites, and
(F : C → D a G : D → C) adjoint functors. Then

(i) G is a morphism of sites (D,K )→ (C, J) if and only if F is a
comorphism of sites (C, J)→ (D,K ).

(ii) In the situation of (i), the geometric morphism CF induced by
F coincides with the geometric morphism Sh(G) induced by
G.

The key idea is to replace the given sites of definition with
Morita-equivalent ones in such a way that every morphism (resp.
comorphism) of sites acquires a left (resp. right) adjoint, not
necessarily in the classical categorial sense but in the weaker
topos-theoretic sense of the associated comma categories having
equivalent associated toposes.
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From morphisms to comorphisms of sites

We shall turn a morphism of sites into a comorphism of sites by
replacing the original codomain site with a site related to it by a
morphism inducing an equivalence of toposes such that the
composite of the given morphism of sites with it admits a left
adjoint; this left adjoint will then be a comorphism of sites inducing
the same geometric morphism (by the above proposition).

We shall denote by (F ↓ G), for two functors F : A → C and
G : B → C, the comma category whose objects are the triplets
(a,b, α) where a ∈ A, b ∈ B and α is an arrow F (a)→ G(b) in C
(and whose arrows are defined in the obvious way).

In particular, given a functor F : C → D, the objects of (1D ↓ F )
are triplets of the form (d , c, α : d → F (c)) where c ∈ C, d ∈ D
and α is an arrow in D.
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From morphisms to comorphisms of sites
Theorem
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites. Let
iF be the functor C → (1D ↓ F ) sending any object c of C to the
triplet (F (c), c,1F (c)) (and acting on arrows in the obvious way), and
πC : (1D ↓ F )→ C and πD : (1D ↓ F )→ D the canonical projection
functors. Let K̃ be the Grothendieck topology on (1D ↓ F ) whose
covering sieves are those whose image under πD is K -covering.
Then

(i) πC a iF , πD ◦ iF = F, iF is a morphism of sites
(C, J)→ ((1D ↓ F ), K̃ ) and cF := πC is a comorphism of sites
((1D ↓ F ), K̃ )→ (C, J);

(ii) πD : ((1D ↓ F ), K̃ )→ (D,K ) is both a morphism of sites and a
comorphism of sites inducing equivalences

CπD : Sh((1D ↓ F ), K̃ )→ Sh(D,K )

and
Sh(πD) : Sh(D,K )→ Sh((1D ↓ F ), K̃ )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1D ↓ F ), K̃ ) Sh(D,K )

Sh(C, J)

CπD

∼

CπC
∼=Sh(iF )

Sh(πD)

Sh(F )
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From comorphisms to morphisms of sites
Below, we shall abbreviate by D̂ the category of presheaves on a
small category D.

Theorem
Let F : (D,K )→ (C, J) be a comorphism of small-generated sites.
Let π′C : (F ↓ 1C)→ C and π′D : (F ↓ 1C)→ D be the canonical
projection functors and jF : D → (F ↓ 1C) the functor sending any
object d of D to the triplet (d ,F (d),1F (d)). Let K be the
Grothendieck topology on (F ↓ 1C) whose covering families are
those which are sent by π′D to K -covering families. Then

(i) jF a π′D, π′C ◦ jF = F, π′C is a comorphism of sites
(F ↓ 1C ,K )→ (C, J) and jF is a (full and faithful) comorphism
and dense morphism of sites (D,K )→ (F ↓ 1C ,K );

(ii) π′D is both a morphism and a comorphism of sites
((F ↓ 1C),K )→ (D,K ) inducing equivalences

Cπ′D : Sh((F ↓ 1C),K )→ Sh(D,K )

and
Sh(π′D) : Sh(D,K )→ Sh((F ↓ 1C),K )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((F ↓ 1C),K ) Sh(D,K )

Sh(C, J)

Cπ′D
∼=Sh(jF )

∼

Cπ′C

Sh(π′D)∼=CjF
CF
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From comorphisms to morphisms of sites

(iii) With the comorphism of sites F : (D,K )→ (C, J) we can
associate the morphism of sites

mF : (C, J)→ (D̂, K̂ )

sending an object c of C to the presheaf HomC(F (−), c) and
K̂ is the extension of the Grothendieck topology K along the
Yoneda embedding D → D̂, which induces a geometric
morphism Sh(mF ) making the following triangle commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh(C, J)

Sh(yD)

∼

Sh(mF )

CyD
CF
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Bridging morphisms and comorphisms of sites
Theorem
Let (C, J) and (D,K ) be small-generated sites.

(i) Let F : (C, J)→ (D,K ) be a morphism of sites, with
corresponding comorphism of sites cF : ((1D ↓ F ), K̃ )→ (C, J)
as above. Let πD : ((1D ↓ F ), K̃ )→ (D,K ) be the canonical
projection functor, and let

wF : (1D ↓ F )→ (cF ↓ 1D)

be the functor jcF , sending an object A of (1D ↓ F ) to the object
(A, cF (A),1cF (A) : cF (A)→ cF (A)). Then wF is both a (full and
faithful) comorphism and a dense morphism of sites
((1D ↓ F ), K̃ )→ ((cF ↓ 1D), K̃ ) satisfying the relation
π′′′D ◦ wF = πD and inducing an equivalence relating F and cF ,
which makes the following diagram commute (where π′′′D
denotes the canonical projection functor (cF ↓ 1D)→ D):

Sh(D,K ) Sh(D,K )

Sh((cF ↓ 1D), K̃ ) Sh((1D ↓ F ), K̃ )

Sh(C, J)

Sh(πD′′′ )

=

Sh(πD)Cπ′′′D ∼ Sh(wF )∼=Cπ′
(1D↓F )

∼

Cπ′C

CwF
∼=Sh(π′(1D↓F ))

CπD ∼
CcF
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Bridging morphisms and comorphisms of sites
(ii) Let G : (D,K )→ (C, J) be a comorphism of sites, with

corresponding morphism of sites mG : (C, J)→ (D̂, K̂ ) as
above. Let

zG : (G ↓ 1C)→ (1D̂ ↓ mG)

be the functor sending any object (d , c, α : G(d)→ c) of
(G ↓ 1C) to the object (yD(d), c, α : yD(d)→ mG(c)) of
(1D̂ ↓ mG), where α is the arrow corresponding to the element
α of mG via the Yoneda Lemma. Then zG is both a (full and
faithful) comorphism and a dense morphism of sites

((G ↓ 1C),K )→ ((1D̂ ↓ mG),
˜̂K ) satisfying the relation

πD̂ ◦ zG = yD ◦ π′D and inducing an equivalence relating G and
mG, which makes the following diagram commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh((1D̂ ↓ mG),
˜̂K ) Sh((G ↓ 1C),K )

Sh(C, J)

Sh(πD̂)

Sh(yD)

∼
CyD

Sh(π′D)∼=CjG
CπD̂ ∼

Sh(zG)

∼

CπC
∼=Sh(imG )

CzG

Sh(jG)∼=CπD′ ∼

Cπ′C
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Bridging morphisms and comorphisms of sites
We shall call a functor which both a morphism and a comorphism of
sites a bimorphism of sites.

The above theorem shows that the relationship between a morphism
F (resp. comorphism G) of sites and the associated comorphism cF
(resp. morphism mF ) of sites is captured by the equivalence

Sh((1D ↓ F ), K̃ ) ' Sh((cF ↓ 1D), K̃ )

(resp.

Sh((G ↓ 1C),K ) ' Sh((1D̂ ↓ mG),
˜̂K ))

of toposes over Sh(C, J) induced by the bimorphism of sites wF
(resp. zG) over C.

Our theorem then tells us that F and cF (resp. G and mG) are not
adjoint to each other in a concrete sense (that is, at the level of sites),
since they are not defined between a pair of categories, nor the
categories (1D ↓ F ) and (cF ↓ 1D) (resp. the categories (G ↓ 1C) and
(1D̂ ↓ mG)) are equivalent in general; nonetheless, they become
‘abstractly’ adjoint in the world of toposes since toposes naturally
attached to such categories are equivalent.
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The dual adjunction
Definition
Let (C, J) be a small-generated site.

(a) The category Mor(C,J) has as objects the morphisms of sites from
(C, J) to a small generated site (D,K ) and as arrows

(F : (C, J)→ (D,K ))→ (F ′ : (C, J)→ (D′,K ′))

between any two such morphisms the geometric morphisms

f : Sh(D′,K ′)→ Sh(D,K )

such that Sh(F ) ◦ f ∼= Sh(F ′):

Sh(C, J) Sh(D,K )

Sh(D′,K ′)

Sh(F )

f
Sh(F ′)

(b) The category Com(C,J) has as objects the comorphisms of sites
from a small-generated site (D,K ) to (C, J) and as arrows

(U : (D,K )→ (C, J))→ (U ′ : (D′,K ′)→ (C, J))

between any two such comorphisms the geometric morphisms

g : Sh(D,K )→ Sh(D′,K ′)

such that CU′ ◦ g ∼= CU :

Sh(D,K ) Sh(C, J)

Sh(D′,K ′)

g

CU

CU′
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The dual adjunction

The assignments F 7→ cF and G 7→ mG introduced above
naturally define two functors

C : (Mor(C,J))
op → Com(C,J)

and
M : Com(C,J) → (Mor(C,J))

op .

Theorem

The functors
C : (Mor(C,J))

op → Com(C,J)

and
M : Com(C,J) → (Mor(C,J))

op

are (2-categorically) adjoint (C on the right and M on the left) and
quasi-inverse to each other.
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The canonical stack of a geometric morphism
Corollary
Let f : F → E be a geometric morphism. Then the canonical
projection functor

πE : (1F ↓ f ∗)→ E

is a comorphism of sites ((1F ↓ f ∗), J̃can
F )→ (E , Jcan

E ) such that
f = CπE .

As we shall see below, the functor πE : (1F ↓ f ∗)→ E is actually a
stack on E , which we call the canonical stack of f : from an indexed
point of view, this stack sends any object E of E to the topos
F/f ∗(E) and any arrow u : E ′ → E to the pullback functor
u∗ : F/f ∗(E)→ F/f ∗(E ′).
We shall call the Grothendieck topology J̃can

F on (1F ↓ f ∗) the
relative topology of f .

By taking f to be the identity, and choosing a site of definition (C, J)
for E , we obtain the canonical stack S(C,J) on (C, J), which sends
any object c of C to the topos Sh(C, J)/l(c). The above corollary
thus specializes to an equivalence

Sh(C, J) ' Sh(S(C,J), J̃can
Sh(C,J)),

which represents a ‘thickening’ of the usual representation of a
Grothendieck topos as the topos of sheaves over itself with respect
to the canonical topology.
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From comorphisms of sites to fibrations
The following result shows that one can naturally associate with a
comorphism of sites a fibration inducing the same geometric
morphism.

Definition
The fibration of generalized elements of a functor F : D → C is the
canonical projection functor πF

C : (1C ↓ F )→ C.

Theorem
Let F : (D,K )→ (C, J) be a comorphism of small-generated sites, i ′F
the canonical functor D → (1C ↓ F ) and K i′F the Grothendieck topology
on (1C ↓ F ) whose covering sieves are those whose pullback along
any arrow whose domain is an object of the form i ′F (d) contains the
image under i ′F of a K -covering sieve on d. Let πF

C and πF
D be the

canonical projections from (1C ↓ F ) respectively to C and D. Then
(i) πF

D a i ′F , πF
C ◦ i ′F = F, πF

C is a comorphism of sites
((1C ↓ F ),K i′F )→ (C, J) and πF

D is a comorphism of sites
((1C ↓ F ),K i′F )→ (D,K );

(ii) i ′F is both a (full and faithful) comorphism of sites and a dense
morphism of sites (D,K )→ ((1C ↓ F ),K i′F ) inducing equivalences

Ci′F : Sh(D,K )→ Sh((1C ↓ F ),K i′F )

and
Sh(i ′F ) : Sh((1C ↓ F ),K i′F )→ Sh(D,K )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1C ↓ F ),K i′F ) Sh(D,K )

Sh(C, J)

Sh(i′F )∼=C
πF
D

∼

C
πF
C

Ci′F
CF
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Fibrations as comorphisms of sites
In the converse direction, every fibration can be naturally regarded
as a comorphism of sites, as follows.

Recall that, given a functor A : C → D and a Grothendieck topology
K in D, there is a smallest Grothendieck topology on C, which
makes A a comorphism of sites to (D,K ). This topology, which we
denote by MA

K , is generated by the (pullback-stable) family of sieves
of the form SA

R := {f : dom(f )→ c | A(f ) ∈ R} for an object c of C
and a K -covering sieve R on A(c).

Proposition
If A is a fibration, the topology MA

K admits the following simpler
description: a sieve R is MA

K -covering if and only if the collection of
cartesian arrows in R is sent by A to a K -covering family.

We shall call MA
K the Giraud topology induced by K , in honour of

Jean Giraud, who used it for constructing the classifying topos
Sh(C,MA

K ) of a stack A on (D,K ).

Proposition
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) yields a comorphism of sites
(C,MA

K )→ (C′,MA′
K ).
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Weak morphisms of toposes
Definition
A weak morphism of toposes f : E → F is a pair of adjoint functors
(f ∗ a f∗).
As in the case of geometric morphism, we call f∗ the direct image of f
and f ∗ the inverse image of f .

Proposition
Let i : F ↪→ E be the geometric inclusion of a subtopos F of a
Grothendieck topos E into E , and let f : G → E be a weak morphism
from a Grothendieck topos G. Then the following conditions are
equivalent:

(i) The weak morphism f factors through i;
(ii) The direct image f∗ takes values in F (that is, factors through i∗);
(iii) The inverse image f ∗ factors (necessarily uniquely up to

isomorphism) through i∗.

Corollary
Let A : C → E be a functor from an essentially small category C to a
Grothendieck topos E , and J be a Grothendieck topology on C. Then
the following conditions are equivalent:

(i) The weak morphism (LA a RA) factors through the canonical
geometric inclusion i : Sh(C, J) ↪→ [Cop,Set];

(ii) The functor RA takes values in Sh(C, J);
(iii) The functor LA factors (necessarily uniquely up to isomorphism)

through the associated sheaf functor aJ : [Cop,Set]→ Sh(C, J).
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Continuous functors
The above result motivates the following definition:

Definition
(a) Given a small-generated site (C, J), we say that a functor

A : C → E is J-continuous if the hom functor RA : E → [Cop,Set]
takes values into Sh(C, J) (equivalently, if the functor
LA : [Cop,Set]→ E factors through aJ : [Cop,Set]→ Sh(C, J)).

(b) Given small-generated sites (C, J) and (D,K ), a functor
A : C → D is said to be (J,K )-continuous if l ′ ◦ A is
J-continuous, where l ′ is the canonical functor D → Sh(D,K ).

The following proposition shows that the above definition is
equivalent to Grothendieck’s notion of continuous functor:

Proposition
Let (C, J) and (D,K ) be small-generated sites and A : C → D a
functor. Then the following conditions are equivalent:

(i) A is (J,K )-continuous.
(ii) The functor

DA := (− ◦ Aop) : [Dop,Set]→ [Cop,Set]

restricts to a functor Sh(D,K )→ Sh(C, J).
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Classifying weak morphisms of toposes

Let [C, E ]J be the full subcategory of [C, E ] on the J-continuous
functors.

Proposition
Let C a locally small category and E a Grothendieck topos.

(i) There is an equivalence

Wmor(E , [Cop,Set]) ' [C, E ]

sending a weak morphism f = (f ∗ a f∗) to the functor f ∗ ◦ yC .
(ii) For any Grothendieck topology J on C making (C, J) a

small-generated site, the above equivalence restricts to an
equivalence

Wmor(E ,Sh(C, J)) ' [C, E ]J

sending a weak morphism g = (g∗ a g∗) to the functor g∗ ◦ l .
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Weak morphisms of sites
These results motivate the following

Definition
Let (C, J) and (D,K ) be small-generated sites. A functor F : C → D
is said to be a weak morphism of sites if it is (J,K )-continuous.
Note that this notion generalizes that of morphism of sites; indeed,
as morphisms of sites induce geometric morphisms of toposes, so
weak morphisms of sites induce weak morphisms of toposes:

Proposition
Any weak morphism F : (C, J)→ (D,K ) of small-generated sites
induces a weak geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J)
such that the following diagram commutes:

C F //

l
��

D

l′

��
Sh(C, J)

Sh(F )∗// Sh(D,K )

Conversely, any weak geometric morphism f = (f ∗ a f∗) such that
f ∗ ◦ l factors through l ′ is induced by a (necessarily unique, if K is
subcanonical) weak morphism of sites (C, J)→ (D,K ).
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Continuous functors
Proposition
Let (C, J) and (D,K ) be small-generated sites and E a
Grothendieck topos. Then

(i) A functor A : C → E is J-continuous if and only if for any
J-covering sieve S on an object c

A(c) = lim−→
f :d→c∈S

A(d)

for each J-covering sieve S on an object c (where the colimit is
indexed by the category

∫
S of elements of S).

(ii) A functor A : C → D is (J,K )-continuous if and only if for any
J-covering sieve S on an object c the canonical cocone with
vertex A(c) on the diagram {A(dom(f )) | f ∈ S} indexed over∫

S is sent by l ′ to a colimit in the topos Sh(D,K ).

(iii) Every J-continuous functor A : C → E is J-continuous in the
sense of Mac Lane and Moerdijk (that is, sends J-covering
families to epimorphic families), and the converse is true if A is
flat (but not in general). More generally, every (J,K )-continuous
functor (C, J)→ (D,K ) is cover-preserving, and every
morphism of sites (C, J)→ (D,K ) is (J,K )-continuous.
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Continuity and cofinaliy

The above proposition suggests that the property of J-continuity
could be interpreted as a sort of cofinality condition.

Indeed, if A is J-continuous then in particular A sends any
J-covering sieve S on an object c of C to an epimorphic family
and hence A(c) is the colimit of the cocone under the diagram
whose vertices are the objects of the form A(d) where d is the
domain of an arrow f : d → c in S and whose arrows are all the
arrows in E over A(c) between such objects.

So the condition for A to be J-continuous amounts precisely to the
assertion that A sends S to an epimorphic family and that this
colimit be equal to the colimit lim−→f :d→c∈S

A(d).

In order to formally express continuity as a form of cofinality, we
are going to introduce relative cofinality conditions.
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Relative cofinality
Proposition
Let (C, J) be a small-generated site and F : A → C and F ′ : A′ → C
two functors to C related by a functor ξ : A → A′ and a natural
transformation α : F → F ′ ◦ ξ. Let Rc (resp. R′c), for any c ∈ C, be the
equivalence relations on the objects of the category (c ↓ F ) (resp. of
(c ↓ F ′)) given by the relation of belonging to the same connected
component.
Then the canonical arrow

α̃ : colim[Cop,Set](yC ◦ F )→ colim[Cop,Set](yC ◦ F ′)

is sent by aJ to an isomorphism

aJ(α̃) : colimSh(C,J)(l ◦ F )→ colimSh(C,J)(l ◦ F )

if and only if the pair (ξ, α) satisfies the following ‘relative cofinality’
conditions:

(i) For any object c of C and any arrow y : c → F ′(a′) in C there are
a J-covering family {fi : ci → c | i ∈ I} and for each i ∈ I an
object ai of A and an arrow yi : ci → F (ai ) such that
(y ◦ fi , α(ai ) ◦ yi ) ∈ R′ci

.
(ii) For any object c of C and any arrows x : c → F (a) and

x ′ : c → F (b) in C such that (α(a) ◦ x , α(b) ◦ x ′) ∈ R′c there is a
J-covering family {fi : ci → c | i ∈ I} such that (x ◦ fi , x ′ ◦ fi ) ∈ Rci

for each i ∈ I.
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J-cofinal functors
It is interesting to apply the proposition in two notable particular
cases:

(1) F = ξ : A → C, F ′ = 1C , α is the identity.
(2) F ′ is the forgetful functor Uc0 : C/c0 → C for an object c0 of C, ξ

is a cocone {ξa : F (a)→ c0 | a ∈ A} under the functor F with
vertex c0 and α is the identity.

Formulating the thesis of the proposition in these particular cases
leads us to introduce the following

Definition
Given a small-generated site (C, J), a functor F : A → C is said to be
J-cofinal if the following conditions are satisfied:

(i) For any object c of C there are a J-covering family
{fi : ci → c | i ∈ I} and for each i ∈ I an object ai of A and an
arrow yi : ci → F (ai ).

(ii) For any object c of C and any arrows x : c → F (a) and
x ′ : c → F (b) in C there is a J-covering family {fi : ci → c | i ∈ I}
such that x ◦ fi and x ′ ◦ fi belong to the same connected
component of the category (ci ↓ F ) for each i ∈ I.
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Two corollaries
The proposition thus yields the following two results:

Corollary
Let (C, J) be a small-generated site and F : A → C a functor. Then F
is J-cofinal if and only if the canonical arrow

colimSh(C,J)(l ◦ F )→ 1Sh(C,J)

is an isomorphism.

Corollary
Let D : A → C be a functor and ξ a cocone {ξa : D(a)→ c0 | a ∈ A}
under D with vertex c0. Let Uc0 be the forgetful functor C/c0 → C, Jc0

the Grothendieck topology on C/c0 whose covering sieves are
precisely those whose image under Uc0 is J-covering and
Dξ : A → C/c0 the canonical lift of D to C/c0 (which satisfies
Uc0 ◦ Dξ = D).
Then ξ is sent by the canonical functor l : C → Sh(C, J) to a colimit
cocone if and only if the functor Dξ is Jc0 -cofinal, equivalently if and
only if the following conditions are satisfied:

(i) For any object c of C and any arrow y : c → c0 in C there are a
J-covering family {fi : ci → c | i ∈ I} and for each i ∈ I an object
ai of A and an arrow yi : ci → D(ai ) such that y ◦ fi = ξai ◦ yi .

(ii) For any object c of C and any arrows x : c → D(a) and
x ′ : c → D(b) in C such that ξa ◦ x = ξb ◦ x ′ there is a J-covering
family {fi : ci → c | i ∈ I} such that x ◦ fi and x ′ ◦ fi belong to the
same connected component of the category (ci ↓ D) for each
i ∈ I.
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Characterization of colimits in toposes
This notion of relative cofinality has several applications. A basic
one is the characterization of colimits in Grothendieck toposes in
terms of generalized elements:

Corollary
Let D : A → E be a functor from a small category A to a
Grothendendieck topos E and ξ a cocone
{ξa : D(a)→ e0 | a ∈ A} under D with vertex e0. Then ξ is a
colimit cocone if and only if the functor Dξ is (Jcan

E )e0 -cofinal,
equivalently if and only if the following conditions are satisfied:

(i) For any object e of E and any arrow y : e→ e0 in E there are
an epimorphc family {fi : ei → e | i ∈ I} in E and for each i ∈ I
an object ai of A and an arrow yi : ei → D(ai ) such that
y ◦ fi = ξai ◦ yi .

(ii) For any object e of E and any arrows x : e→ D(a) and
x ′ : e→ D(b) in E such that ξa ◦ x = ξb ◦ x ′ there is an
epimorphic family {fi : ei → e | i ∈ I} in E such that x ◦ fi and
x ′ ◦ fi belong to the same connected component of the
category (ei ↓ D) for each i ∈ I.
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Characterization of continuous functors
Let

DA
S :
∫

S → D

be the functor sending any (d , f ) of
∫

S to A(d), together with the
cocone ξA with vertex A(c) under it (whose legs are the arrows
A(f ) : A(d) = DA

S((d , f ))→ A(c) for any object (d , f ) of
∫

S).

Applying one of the above corollaries to it, we obtain the following
explicit characterization of (J,K )-continuous functors:

Proposition
Let (C, J) and (D,K ) be small-generated sites. Then a functor
A : C → D is (J,K )-continuous if and only if it is cover-preserving (i.e.,
sends J-covering families to K -covering ones) and for any J-covering
sieve S on an object c and any commutative square of the form

d //

��

A(c′)

A(f )

��
A(c′′)

A(g) // A(c),

where f : c′ → c and g : c′′ → c are arbitrary arrows of S, there is a
K -covering family {di → d | i ∈ I} such that for each i ∈ I, the
composites di → A(c′) and di → A(c′′) belong to the same connected
component of the category (di ↓ DA

S).
Indeed, the conditions of the proposition are equivalent to the
requirement that that the lift

(DS
A )ξA :

∫
S → D/A(c)

of the diagram DS
A to D/A(c) induced by the cocone ξA be

KA(c)-cofinal.
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Continuity of (morphisms of) fibrations

By using the above characterization of continuous functors, one
can prove

Proposition
Let A : C → D be a fibration. Then, for any Grothendieck topology
K on D, A is a continuous comorphism of sites (C,MA

K )→ (D,K ).

More generally, we have the following result:

Theorem
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) is a continuous
comorphism of sites (C,MA

K )→ (C′,MA′
K ).
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Classifying essential morphisms
Recall that a geometric morphism f : F → E is said to be essential if
its inverse image f ∗ has a left adjoint, denoted by f! and called its
essential image.

Theorem
Let (C, J) be a small-generated site, E a Grothendieck topos. Let
Geomess(Sh(C, J), E) be the category of essential geometric
morphisms, and Comcont((C, J), (E , Jcan

E )) the category of
J-continuous comorphisms of sites (C, J)→ (E , Jcan

E ). Then we
have an equivalence

Geomess(Sh(C, J), E) ' Comcont((C, J), (E , Jcan
E ))

sending an essential geometric morphism f = (f! a f ∗ a f∗) to the
comorphism of sites f! ◦ l and a J-continuous comorphism of sites A
to the geometric morphism CA induced by it.
We say that two comorphisms of sites A,A′ : (C, J)→ (D,K ) are
K -equivalent if the geometric morphisms CA and CA′ that they
induce are isomorphic.

Corollary
Let (C, J) and (D,K ) be small-generated sites. Then we have an
equivalence between the essential geometric morphisms
f : Sh(C, J)→ Sh(D,K ) such that f! ◦ l : C → Sh(D,K ) factors
through the canonical functor l ′ : D → Sh(D,K ) and the
(J,K )-continuous comorphism of sites (C, J)→ (D,K ), considered
up to K -equivalence.

61 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Continuous comorphisms of sites
The following result provides alternative characterizations for the
property of a comorphism of sites to be continuous:

Proposition
Let A : (C, J)→ (D,K ) be a comorphism of sites. Then the following
conditions are equivalent:

(i) A is (J,K )-continuous.
(ii) The left Kan extension functor LanAop : [Cop,Set]→ [Dop,Set]

along Aop satisfies the property that aK ◦ LanAop factors
(necessarily uniquely) through aJ .

(iii) The geometric morphism CA induced by A is essential and its
essential image (CA)! makes the following diagram commute:

[Cop,Set]
LanAop //

aJ

��

[Dop,Set]

aK

��
Sh(C, J)

(CA)! // Sh(D,K )

If A induces an essential geometric morphism CA then there is a
canonical morphism (CA)! ◦ l → l ′ ◦ A, and A is (J,K )-continuous if
and only if this morphism is an isomorphism, equivalently if and only
if the canonical morphism

(CA)! ◦ aJ → aK ◦ LanAop

is an isomorphism.
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Local connectedness

The notion of locally connected morphism represents a natural
strengthening of the notion of essential morphism. Recall that a
geometric morphism f : F → E is said to be locally connected if f ∗

has an E-indexed left adjoint, equivalently for any arrow h : A→ B
in E , the square

F/f ∗(B)
(f/B)! //

(f∗(h))∗

��

E/B

h∗

��
F/f ∗(A)

(f/A)! // E/A

commutes.

The continuity of (morphisms of) fibrations implies that such
comorphisms always induce essential geometric morphisms. One
might thus wonder if these morphisms always induce locally
connected morphisms. Interestingly, one can prove that this is
true for fibrations but not in general for morphisms of fibrations.

63 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Indexed categories and fibrations
The language in which we shall work for developing relative topos
theory is that of indexed categories and fibrations.
• Given a category C, we shall denote by IndC the 2-category of
C-indexed categories: it is the 2-category [Cop,Cat]ps whose
0-cells are the pseudofunctors Cop → Cat, whose 1-cells are
the pseudonatural transformations and whose 2-cells are the
modifications between them.

• Given a category C, we shall denote by FibC the 2-category of
fibrations over C: it is the sub-2-category of CAT/C whose
0-cells are the (Street) fibrations p : D → C, whose 1-cells are
the morphisms of fibrations (with a ‘commuting’ isomorphism)
and whose 2-cells are the natural transformations between
them.
We shall denote by cFibC the full sub-2-category of cloven
fibrations (i.e. fibrations equipped with a cleavage).

It is well-known that indexed categories and fibrations are in
equivalence with each other:

Theorem
For any category C, there is an equivalence of 2-categories
between IndC and cFibC , one half of which is given by the
Grothendieck construction and whose other half is given by the
functor taking the fibers at the objects of C.
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The notion of stack
Definition
Consider a site (C, J) and a fibration p : D → C: then p is a
J-prestack (resp. J-stack) if for every J-sieve mS : S � yC(X ) the
functor

− ◦
∫

mS : FibC(C/X ,D)→ FibC(
∫

S,D)

is full and faithful (resp. an equivalence).
Stacks over a site (C, J) form a 2-full and faithful subcategory of
IndC , which we will denote by St(C, J).

The notion of stack on a site is a higher-categorical generalization
of that of sheaf on that site:

Proposition
Consider a site (C, J) and a presheaf P : Cop → Set: then P is
J-separated (resp. J-sheaf) if and only if the fibration

∫
P → C is a

J-prestack (resp. J-stack).
We can rewrite the condition for a pseudofunctor Cop → Cat to be a
J-prestack (resp. J-stack) in the language of indexed categories, as
the requirement that for every sieve mS : S � yC(X ) the functor

IndC(yC(X ),D)
−◦mS−−−→ IndC(S,D)

be full and faithful (resp. an equivalence), where both yC(X ) and S
are interpreted as discrete C-indexed categories.
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Stacks for relative topos theory
The role of stacks in our approach to relative topos theory is
two-fold:
• On the one hand, the notion of stack represents a higher-order

categorical generalization of the notion of sheaf. Accordingly,
categories of stacks on a site represent higher-categorical
analogues of Grothendieck toposes. One can thus expect to
be able to lift a number of notions and constructions pertaining
to sheaves (resp. Grothendieck toposes) to stacks (resp.
categories of stacks on a site).

• On the other hand, stacks on a site (C, J) generalize internal
categories in the topos Sh(C, J). Since (ordinary) categories
can be endowed with Grothendieck topologies, so stacks on a
site can also be endowed with suitable analogues of
Grothendieck topologies. This leads to the notion of site
relative to a base topos, which is crucial for developing relative
topos theory.

Remark
Every stack is equivalent to a split stack, and hence to an internal
category, but most stacks naturally arising in the mathematical
practice are not split (think, for instance, of the canonical stack of a
topos).
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The big picture
Our theory is based on a network of 2-adjunctions (for any small
site (C, J)):

IndC Topos/Sh(C, J)co

St(C, J) EssTopos/Sh(C, J)co

Sh(C, J)

sJ

Λ

⊥
Γ

`

E◦Λ′

Λ′

⊥

L

Γ′

` Ea

In this diagram sJ denotes the stackification functor, Topos the
category of Grothendieck toposes and geometric morphisms and
EssTopos the full subcategory on the essential geometric
morphisms.

• The functor E sends an essential geometric morphism
f : E → Sh(C, J) to the object f!(1E ) (where f! is the left adjoint
to the inverse image f ∗ of f ).
• The functor L sends an object P of Sh(C, J) to the canonical

local homeomorphism Sh(C, J)/P → Sh(C, J).
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Pseudo-Kan extensions
Proposition
Denote by Inds

C the sub-2-category of IndC of pseudofunctors with
values in Cat (i.e. ‘small’ C-indexed categories). Consider any
functor F : C → D and the direct image 2-functor

F ∗ : Inds
D → Inds

C

which acts by precomposition with F op. The 2-functor F ∗ has both
a left and a right 2-adjoint, denoted respectively by LanF op and
RanF op , which act as follows:
• for any D in D denote by πD

F : (D ↓F )→ C the canonical
projection functor: then for E : Cop → Cat, its image
LanF op (E) : Dop → Cat is defined componentwise as

LanF op (E)(D) := colimps

(
(D ↓F )op (πD

F )op

−−−−→ Cop E−→ Cat
)

• for any D in D denote by π′DF : (F ↓D)→ C the canonical
projection functor: then for E : Cop → Cat, its image
RanF op (E) : Dop → Cat is defined componentwise as

RanF op (E)(D) := limps

(
(F ↓D)op (π′DF )op

−−−−→ Cop E−→ Cat
)
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Direct and inverse images of stacks

Proposition (O.C. and R.Z.)
Consider two sites (C, J) and (D,K ) and a functor F : C → D.
• Then F is (J,K )-continuous functor if and only if

F ∗ : IndD → IndC restricts to a 2-functor St(D,K )→ St(C, J).
• If F is a morphism of sites F : (C, J)→ (D,K ), or more

generally a (J,K )-continuous functor, it induces a 2-adjunction

Sts(C, J) Sts(D,K )

St(F )∗

St(F )∗
a

,

whose pair we shall refer to simply by St(F ).
• The 2-functor St(F )∗ is called the direct image of stacks along

F and acts as the precomposition

F ∗ := (− ◦ F op) : IndD → IndC ;

In terms of fibrations, a stack q : E → D is mapped by St(F )∗
to its strict pseudopullback p : P → C along F.
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Direct and inverse images of stacks
• The left adjoint St(F )∗ is the inverse image of stacks along F

and acts as the composite

Sts(C, J)
iJ−→ Inds

C
LanFop−−−−→ Inds

D
sK−→ Sts(D,K ),

where sK denotes the stackification functor. In terms of
fibrations, a stack p : P → C is mapped by St(F )∗ to the
stackification of its inverse image LanF op ([p]) along F , which
can be computed as a localization as follows. Consider the
fibration of generalized elements

(1D ↓(F ◦ p))
r−→ D

of the functor F ◦ p, whose objects are arrows
[d : D → (F ◦ p)(U)] of D, and whose morphisms

(e, α) : [d ′ : D′ → (F ◦ p)(V )]→ [d : D → (F ◦ p)(U)]

are indexed by an arrow e : D′ → D in D and an arrow
α : V → U in P such that (F ◦ p)(α) ◦ d ′ = d ◦ e. Consider the
class of arrows

S := {(e, α) : [d ′]→ [d ] | (e, α) r -vertical, α cartesian in P} :

then
LanF op ([p]) ' (1D ↓(F ◦ p))[S−1] .
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Direct and inverse images of stacks
In a similar way to morphisms of sites, comorphisms of sites also
induce an adjunction between categories of stacks:

Proposition (O.C. and R.Z.)
Consider a comorphism of sites F : (C, J)→ (D,K ): it induces a
2-adjunction

Sts(D,K ) Sts(C, J)

(CSt
F )∗

(CSt
F )∗

a

,

whose pair we shall refer to by CSt
F .

• The right adjoint (CSt
F )∗ acts by restriction of the right

pseudo-Kan extension RanF op to stacks;
• The left adjoint (CSt

F )∗ acts as the composite 2-functor

Sts(D,K )
iK−→ Inds

D
F∗−−→ Inds

C
sJ−→ Sts(C, J),

where F ∗ := (− ◦ F op).
• If F is also continuous the CSt

F also has a left adjoint (CSt
F )! given

by the composite 2-functor

Sts(C, J)
iJ−→ Inds

C
LanFop−−−−→ Inds

D
sK−→ Sts(D,K ) .
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Relative ‘presheaf toposes’

Given a C-indexed category D, we denote by G(D) the fibration on
C associated with it (through the Grothendieck construction) and
by pD the canonical projection functor G(D)→ C.

Proposition (O.C. and R.Z.)
Let (C, J) be a small-generated site, D a C-indexed category and
DV be the opposite indexed category of D (defined by setting, for
each c ∈ C, DV (c) = D(c)op). Then we have a natural equivalence

Sh(G(D),MpD
J ) ' IndC(DV ,S(C,J)) .

This proposition shows that, if D is a stack, the classifying topos
Sh(G(D),MpD

J ) of D, which we call the Giraud topos of D, can
indeed be seen as the “topos of relative presheaves on D”.
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Giraud toposes as weighted colimits

We have shown that, for any D, the Giraud topos
CpD : Sh(G(D),MpD

J )→ Sh(C, J) can be naturally seen as a
weighted colimit of a diagram of étale toposes over Sh(C, J):

Sh(C/X , JX ) Sh(C/Y , JX )

Sh(G(D),MpD
J )

λ(X,V ) λ(X,U)

CΣy

λ(Y ,(D(y)(U)))

λ(X,a)

∼=

where y : Y → X and a : U → V are arrows respectively in C and
in D(X ), the legs λ(X ,U) : Sh(C/X , JX )→ Sh(G(D),MpD

J ) of the
cocone are the morphisms Cξ(X,U)

induced by the morphisms of
fibrations ξ(X ,U) : C/X → G(D) over C given by the fibered Yoneda
lemma, and the functor Σy : C/Y → C/X are given by composition
with y .
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The fundamental adjunction
The universal property of the above weighted colimit yields a
fundamental 2-adjunction between cloven fibrations over C and
toposes over Sh(C, J):

Theorem (O.C and R.Z.)
For any small-generated site (C, J), the two pseudofunctors

ΛToposco/Sh(C,J) : cFibC
G−→ Com/(C, J)

C(−)−−−→ Toposco/Sh(C, J),[
[p : D → C]

(F ,φ)−−−→ [q : E → C]

]
7→
[

[GirJ(p)]
(CF ,Cφ)−−−−−→ [GirJ(q)]

]
,

and

ΓToposco/Sh(C,J) : Toposco/Sh(C, J)→ IndC ' cFibC ,

[E : E → Sh(C, J)] 7→
[
Toposco/Sh(C, J)(Sh(C/−, J(−)), [E ]) : Cop → CAT

]
are the two components of a 2-adjunction

cFibC Toposco/Sh(C, J)

ΛToposco/Sh(C,J)

`

ΓToposco/Sh(C,J)

Remark
Since GirJ(p) ' IndC(DV ,S(C,J)), the canonical stack S(C,J) has a
similar behavior to that of a dualizing object for the adjunction Λ a Γ.
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The discrete setting

The restriction of our fundamental adjunction in the setting of
presheaves (that is, discrete fibrations) will yield a generalization
to the context of arbitrary sites of the classical adjunction

Psh(X ) Top/X

Λ

a
Γ

.

between presheaves on a topological space X and bundles over
it.

This adjunction can be notably applied to the theory of sheaves,
leading to fibrational descriptions of the sheafification functor, as
well as of direct and inverse images of sheaves.

75 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Relative sheaf toposes
As any Grothendieck topos is a subtopos of a presheaf topos, so
any relative topos should be a subtopos of a relative presheaf
topos. This motivates the following

Definition
Let (C, J) be a small-generated site. A site relative to (C, J) is a
pair consisting of a C-indexed category D and a Grothendieck
topology K on G(D) which contains the Giraud topology MpD

J .

The topos of sheaves on such a relative site (D,K ) is defined to
be the geometric morphism

CpD : Sh(G(D),K )→ Sh(C, J)

induced by the comorphism of sites pD : (G(D),K )→ (C, J).

Remark
Not every Grothendieck topology on K can be generated starting
by horizontal or vertical data (that is, by sieves generated by
cartesian arrows or entirely lying in some fiber), but many
important relative topologies naturally arising in practice are of
this form.
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Examples of relative topologies

• The relative topology on the canonical stack of a geometric
morphism (which allows one to represent any relative topos
as the topos of sheaves on a relative site).

• The Giraud topology is an example of a relative topology
generated by horizontal data.

• The total topology of a fibered site, in the sense of
Grothendieck, is generated by vertical data.

We have shown that, for a wide class of relative topologies
generated by horizontal and vertical data, one can describe
bases for them consisting of multicompositions of horizontal
families with vertical families.
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A question of Grothendieck

As recently brought to the public attention by Colin McLarty,
Grothendieck expressed, in his 1973 Buffalo lectures, the
aspiration of viewing any object of a topos geometrically as an
étale space over the terminal object:

The intuition is the following: viewing objects of a topos
as being something like étale spaces over the final object
of the topos, and the induced topos over an object as just
the object itself. That is I think the way one should handle
the situation.
It’s a funny situation because in strict terms, you see,
the language which I want to push through doesn’t make
sense. But of course there are a number of mathematical
statements which substantiate it.

Given his conception of gros and petit toposes, we can more
broadly interpret his wish as that for a framework allowing one to
think geometrically about any topos, that is, as it were a ‘petit’
topos related to a ‘gros’ topos by a local retraction.

78 / 84



Relative topos
theory via stacks:

an introduction

Olivia Caramello

Motivation

Topos-theoretic
background

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Relative toposes
Stacks

Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A problem of
Grothendieck

Future directions

Local morphisms

Recall that a geometric morphism f : F → E is said to be local if f∗
has a fully faithful right adjoint.

Theorem (O.C.)
Let F : D → C be a bimorphism of sites (D,K )→ (C, J). Then:

(i) The geometric morphism CF : Sh(D,K )→ Sh(C, J) is
essential, and

(CF )!
∼= Sh(F )∗ a Sh(F )∗ ∼= (CF )∗ = DF := (−◦F op) a (CF )∗

(ii) The morphism Sh(F ) : Sh(C, J)→ Sh(D,K ) is local if and
only if CF is an inclusion, that is, if and only if F is K -faithful
and K -full. In this case, the morphisms CF and Sh(F ) realize
the topos Sh(D,K ) as a (coadjoint) retract of Sh(C, J) in
Topos.
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Gros and petit toposes

Pairs of gros and petit toposes are important for several reasons.
Morally, a petit topos is thought of as a generalized space, while a
gros topos is conceived as a category of spaces.

In fact, one advantage of gros toposes is that they are associated
with sites which tend to have better categorical properties than
those of the site presenting the petit topos.

Still, gros and petit toposes in a given pair are homotopically
equivalent (as they are related by a local retraction), whence they
share the same cohomological invariants.

The above result can be notably applied to construct pairs of gros
and petit toposes starting from a (K -)full and (K -)faithful
bimorphism of sites

(D,K )→ (T /TD,ETD ),

where T is a category endowed with a Grothendieck topology E ,
TD is an object of T and ETD is the Grothendieck topology
induced on (T /TD) by E .
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Every Grothendieck topos is a ‘small topos’
We define a Grothendieck topology Jét on Topos, which we call the
étale cover topology, by postulating that a sieve on a topos E is
Jét-covering if and only if it contains a family {E/Ai → E | i ∈ I} of
canonical local homeomorphisms such that the family of arrows
{!Ai : Ai → 1E | i ∈ I} is epimorphic in E .

The functor L is a J-full and J-faithful bimorphism of sites

(C, J)→ (Topos/Sh(C, J), Jét
Sh(C,J)) .

So, by the above result, the ‘petit’ topos Sh(C, J) identifies with a
coadjoint retract of the ‘big’ topos
Sh(Topos/Sh(C, J), Jét

Sh(C,J)) ' Sh(Topos, Jét)/l(Sh(C, J)) (in a
suitable Grothendieck universe) via the local morphism Sh(L) and
the essential inclusion CL.

This shows that every Grothendieck topos can be naturally
regarded as a ‘petit’ topos embedded in an associated ‘gros’ topos,
and that this embedding allows one to view any object of the original
topos as an étale morphism to the terminal object in the associated
‘gros’ topos, thus providing a solution to Grothendieck’s problem.
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Future developments

Our notion of relative site will play a key role in our future
development the theory of relative toposes.

We expect the development of this theory to parallel that of the
classical theory; indeed, by using a general stack semantics, we
plan to introduce, in a canonical, not ad hoc way, natural
generalizations to the relative setting of the classical notions of
morphism and comorphism of sites, flat functors, separating sets
for a topos, denseness conditions etc.

This will notably lead us to relative versions, in the language of
stacks (or, more generally, of indexed categories), of Giraud’s and
Diaconescu’s theorems, as well as to a theory of classifying
toposes of (higher-order) relative geometric theories.
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Towards relative geometric logic

Indeed, the geometric approach to relative toposes which we
have developed so far has a logical counterpart, which we may
call relative geometric logic.

In its classical formulation, geometric logic does not have
parameters embedded in its formalism; still, it is possible to
introduce them without changing its degree of expressivity.

In a relative setting, parameters are fundamental if one wants to
reason geometrically and use fibrational techniques. In fact, the
semantics of stacks involves parameters in an essential way.

It turns out that the logical framework corresponding to relative
toposes is a kind of fibrational, higher-order parametric logic in
which it is possible to express a great number of higher-order
constructions by using the parameters belonging to the base
topos.
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For further reading

O. Caramello,
Denseness conditions, morphisms and equivalences of
toposes,
monograph draft available as arxiv:math.CT/1906.08737v3
(2020).

O. Caramello and R. Zanfa,
Relative topos theory via stacks,
monograph draft available as arxiv:math.AG/2107.04417v1
(2021).

O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).
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